
Configurable Computing: Fabrics and Systems

114 0740-7475/05/$20.00 © 2005 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers

A HIGH-END RECONFIGURABLE COMPUTER

(HERC) is a machine with supercomputer-level perfor-

mance configured on a per-problem basis to match the

structure of the algorithm and data flow of a computing

task. In such a machine, all data and control paths; mem-

ory ports and controllers, and communication channels

and controllers, are customizable to match a particular

application’s needs. In the Berkeley Emulation Engine 2

(BEE2) project, we seek to design, construct, and pro-

gram a HERC for a set of application areas. At the

Berkeley Wireless Research Center (BWRC), we have

assembled the first two-module BEE2 system prototype,

using entirely commercial off-the-shelf components. We

will expand the prototype system to include 12 modules

and serve as the computing platform for various research

projects at BWRC.

Several computationally intensive problems are cen-

tral to BWRC’s research objectives. These problems act

as an application benchmark set and design drivers for

specifying the machine architecture and its associated

software mapping tools. The applications fall into four

broad categories:

■ emulation and design of novel wireless communi-

cations systems,

■ high-performance real-time digital signal processing,

■ real-time scientific computation and

simulation, and

■ the acceleration of CAD tools.

The analysis in this article concentrates

on high-performance DSP applications.

Some DSP applications would typically

not fit on a single processor; cell phone

base station processing (as opposed to processing within

individual cells phones) is one such application.

Computational efficiency, measured in throughput per

unit cost or power consumption, is crucial to the success

of these systems.

When evaluating the performance of general-pur-

pose software on microprocessors, it is possible to use

platform-independent benchmarks written in high-level

languages such as C or C++. DSP applications, howev-

er, often employ other types of implementations, such

as DSPs, FPGAs, and ASICs. For these implementations,

C or C++ compilation is immature and often produces

final hardware implementations far less optimal than

using alternative, low-level design methods. This per-

formance degradation is mainly due to the mismatch

between the inherently sequential execution model of

the C description and the spatially parallel execution

nature of the underlying hardware implementation

technology.

Therefore, to maximize computational efficiency,

engineers typically use low-level design input methods

particular to the underlying hardware. For micro-

processors and DSPs, current best-practice program-

ming methodology uses assembly languages. For FPGAs

and ASICs, hardware description languages (such as

VHDL and Verilog) are the common choice. So far, no

BEE2:
A High-End Reconfigurable
Computing System

The BEE2 project is developing a reusable, modular, and scalable framework
for designing high-end reconfigurable computers, including a processing-
module building block and several programming models. Using these
elements, BEE2 can provide over 10 times more computing throughput than
a DSP-based system with similar power consumption and cost, and over 100
times that of a microprocessor-based system.

Chen Chang, John Wawrzynek, and

Robert W. Brodersen

University of California, Berkeley

single DSP benchmark set is available on all four hard-

ware implementation technologies.

Even within a single hardware technology, such as

DSPs, the proprietary architectures of individual DSP

chips have largely forced programmers to focus on the

performance of the specific application at hand, rather

than using established benchmarks. The situation is

even worse in the case of FPGAs or ASICs, where all

aspects of the processing architecture can be user

defined. We have focused our study on FPGAs versus

DSPs for a set of high-performance digital-signal-pro-

cessing applications.

Target application domains
Ongoing research projects on advanced wireless

communication systems at BWRC have used advanced

design techniques. These techniques include sophisti-

cated encoding-decoding techniques (such as turbo and

low-density parity check codes), software-defined-radio

design, cognitive spectral reuse, multimode operation

(using the Global System for Mobile Communications,

and the code division multiple access and time division

multiple access protocols), and multiple antenna MIMO

(multiple-input, multiple-output) systems, all of which

require ever-increasing digital-processing capability and

flexibility at minimal power consumption. The valida-

tion of these complex systems requires in-system emu-

lation of the physical-layer processing over hundreds or

thousands of packets or frames. This emulation would

take weeks on conventional microprocessor-based com-

puters, far exceeding the real-time requirement of the

analog subsystems.

To address these issues, we designed the BEE2 sys-

tem’s predecessor, the Berkeley Emulation Engine

(BEE),1 in 2001. This system has been in active service

for two years, serving as a real-time emulator of novel

wireless communication ASICs. BEE2 will not only sur-

pass this system’s emulation speed, but also provide a

scalable solution for ever-increasing emulation capac-

ity requirements. BEE2 will handle a single ASIC or SoC,

as well as a complete ad hoc sensor network with thou-

sands of individual nodes.

The targeted high-performance real-time DSP appli-

cations use the BEE2 system as the final implementa-

tion, unlike the emulation applications, where the BEE2

system is part of the design automation tools. A key area

in this domain is radio astronomy beamforming, spatial

correlation, and wide-band fine-resolution spectroscopy

for large radio telescope antenna arrays, such as the

Allen telescope array (http://seti.berkeley.edu). These

applications have low numeric precision requirements

(typically 4- to 32-bit fixed-point) but must meet the pro-

cessing requirements of several gigahertz of continuous

RF bandwidth over hundreds of physical antennas. So

they can easily require speeds of a teraoperations per

second (TOPS) to more than a petaoperation per sec-

ond (POPS).

The hard real-time throughput and the high-perfor-

mance requirements make it next to impossible to

implement these applications on conventional micro-

processors with a nondeterministic execution model.

Rather, the dataflow processing nature of these algo-

rithms matches the stream-based computation model

commonly used on reconfigurable devices, with

throughput directly locked to the system clock rate. So

the radio astronomy community has been using FPGAs

or ASICs for these applications. The diverse scientific

requirements from one telescope to another have, to

date, meant that the scientific research community has

engineered and developed most existing radio tele-

scopes. So almost all existing implementations in this

area have been custom designs with little reusability

from one implementation to another.

The BEE2 system is one of the first attempts at pro-

viding a scalable, modular, economic solution for a

range of high-performance radio telescope DSP appli-

cations. Furthermore, BEE2 provides a unique multiuser

environment, much like that in a conventional PC clus-

ter, where many users can share a common pool of

computing resources with guaranteed computational

throughput. Other applications in this domain include

advanced video compression and transcoding, and

real-time hyperspectral imaging.

Real-time scientific computing involves a set of com-

puting tasks traditionally solved using supercomputers or

clusters. One example of interest to BWRC is 3D electro-

magnetic field simulation for antenna design. This prob-

lem, like many other large-scale simulations of physical

systems, is characterizable by large systems of partial dif-

ferential equations, often involving large regular or adap-

tive grid structures. The conventional methods require

fast-Fourier transform (FFT) and large-matrices opera-

tions; they typically employ double-precision floating-

point computations. Traditionally, such problems are not

solved in real time; however, real-time processing of this

class of problem would have significant new application.

Furthermore, many opportunities exist for innovation on

the algorithms and mapping of these problems to recon-

figurable machines. Recently, various academic research

projects have shown that FPGAs can provide up to three

115March–April 2005

orders of magnitude higher performance than conven-

tional microprocessor cluster solutions for selected 2D

and 3D finite-difference time domain (FDTD) problems.2,3

We are also studying how to use BEE2 to develop

techniques that speed up the tool flows for ASIC and

FPGA design. Of primary concern is acceleration of

Spice circuit simulation. Also, existing low-level FPGA

tool flows (for placement and routing) are currently too

slow to be practical for HERC systems. Current place-

ment-and-routing cycle times of hours are unacceptable

for reconfigurable systems with hundreds of FPGAs,

potentially each with a unique configuration. We

believe that BEE2-like HERC machines can eventually

help accelerate their own tools. Some early work on

hardware-assisted fast routing4 and simulated anneal-

ing for FPGA placement5,6 shows promise along these

lines and will guide our work.

Traditional supercomputer approaches
Modern supercomputers are typically a collection of

commodity microprocessors. These systems typically

demonstrate peak system performance (on artificial

benchmarks) of about 100 Gflops to 10 Tflops. The key

idea behind the success of this class of machines is the

adoption of commodity components, namely off-the-

shelf microprocessors and memory modules. In most

cases, the low-volume production of supercomputers

makes it difficult to justify the cost and time for custom

processor development. Also, using commodity com-

ponents enables rapid technology refresh and perfor-

mance scaling as new components

come to market.

Figure 1 illustrates a trend in the com-

putational densities of microprocessors

and FPGAs. The graph shows the evolu-

tion of peak processor computation den-

sity over time through the previous six

generations of Intel desktop processors.

This data is specific to Intel micro-

processors but exemplifies all super-

scalar microprocessor architectures. It

clearly shows the inability of micro-

processors to efficiently turn increasing

die area and speed into useful compu-

tation.

Over the same period, the peak com-

putational density of FPGAs has sur-

passed Moore’s law. Because of their

simple hardware structure, each succes-

sive generation of FPGA scales naturally

with process technology. The use of more metal layers

for on-chip interconnects and the inclusion of dedicat-

ed functional blocks have also aided FPGAs in scaling

peak performance.

Of course, comparing processor and FPGA compu-

tational density is not entirely fair, because conven-

tional processors come with a programming model and

mature compilation tools, whereas FPGAs often require

the laborious hand mapping of applications. However,

the goal of our research is to make computing with

reconfigurable devices similar in convenience to that

of a microprocessor. Our experience with the BEE has

demonstrated that, at least within the DSP domain, high

user productivity and efficient application mapping is

possible.

Another troubling characteristic of high-end micro-

processor-based systems is the widening gap between

memory and processor speeds. This gap has led to sev-

eral layers of caches in these systems. The unpre-

dictable latency through this cached-memory hierarchy

makes it difficult to meet hard real-time requirements

and program large multiprocessor systems.

A high-end computer based on FPGAs allows a high

degree of spatial parallelism and circuit specialization

within nodes, resulting in increased performance densi-

ty even at significantly lower clock rates than that avail-

able in microprocessors. The lower clock rate results in

reduced power and a better match to the speed of syn-

chronous DRAM memory systems. Furthermore, FPGA

designs can provide multiple independently addressed

Configurable Computing: Fabrics and Systems

116 IEEE Design & Test of Computers

 107

 106

 105

 104

 103

M
O

P
S

/M
H

z/
un

it
ar

ea

FPGA floating-point addition
(double precision)
Processors, SPECfp 2000
Processor peak
FPGA, 32-bit integer MAC

28-Oct-95 11-Mar-97 24-July-98 6-Dec-99 19-Apr-01 1-Sept-02 14-Jan-04

Release data

Figure 1. Computational density of FPGAs and Intel processors.

memory banks per processing node, resulting in signifi-

cantly higher memory bandwidth per node than con-

ventional microprocessor systems. This also provides

deterministic memory latency as a result of removing

caches. By interfacing FPGAs directly to the communi-

cation network, the low-level configurability of FPGAs

permits a high degree of flexibility in the network—allow-

ing, for instance, circuit-switched routing for some appli-

cations and packet-switched dynamically routed

messages in others. Predictable memory and network

latency enables the static scheduling of memory access-

es and data transfers in real-time applications.

Commercial reconfigurable computer
developments

Recently, the computational capabilities of com-

mercial FPGAs from Altera and Xilinx have increased

tremendously in terms of silicon gate count and circuit

speed. By directly embedding dedicated arithmetic

units (multipliers and accumulators) and general-pur-

pose processor cores (such as the PowerPC 405 in the

Xilinx Virtex-2 Pro) into the reconfigurable fabric, high-

end FPGAs have evolved into a SoC solution for appli-

cations that require high throughput integer or

floating-point computations. For example, the Xilinx

Virtex-4 FPGAs,7 built with 90-nm CMOS technology,

have up to 512 multiply-accumulate (MAC) units, each

with a dedicated 18-bit multiplier followed by a 48-bit

accumulator, operating at greater than 500 MHz. Such

an FPGA can achieve a peak performance of 256 billion

MAC operations per second or 512 GOPS, using only the

dedicated cores. If an implementation also uses a recon-

figurable fabric, peak performance can reach as high

as 1 TOPS (16-bit operations)—a 100 to 1,000 times high-

er throughput than that of any existing commercial

microprocessor or DSP.

Currently, several commercial and academic projects

are developing hardware and software systems to

employ the raw computational power of these new

FPGAs. Most of the available commercial HERCs are aug-

mented computer clusters or supercomputers with

FPGAs attached to the system bus or I/O interfaces as

computation kernel accelerators. The Annapolis

Wildstar FPGA systems (http://www.annapmicro.com)

connect processing boards with one to four FPGAs to the

Peripheral Component Interconnect (PCI) bus of a con-

ventional computer node. Similarly, Starbridge Systems’

Hypercomputer (http://www.starbridgesystems.com)

packs up to 11 FPGAs on a large PCI-X (extended PCI)

board. One major performance bottleneck in these sys-

tems is the communication bandwidth between the

microprocessor and the FPGA accelerator board; at

peak throughput, this is 132 Mbps on a PCI 33-MHz bus

or 1,064 Mbps on a PCI-X 133-MHz bus. To remove this

bottleneck, SRC Computers attaches their FPGA acceler-

ator module, called the Multi-Adaptive Processor,8 direct-

ly to the memory interface, which provides a 2,800-Mbps

throughput to their proprietary Hi-Bar switch. This

arrangement connects all processors and main memo-

ries in a single compute node. However, this interface’s

proprietary nature limits its adaptation to only selected

high-end supercomputers.

The latest solution to this interface problem originally

came from Octigabay, now acquired by Cray for its XD1

system (http://www.cray.com/products/xd1/index.html).

This solution uses the HyperTransport interface technol-

ogy9 from AMD to connect up to six FPGAs to the AMD

Optron microprocessor’s north bridge. Because

HyperTransport is part of all AMD Optron and Athlon 64

computers, it provides a more economical solution with a

data throughput of 3,200 Mbps.

Nevertheless, none of these solutions address the

issue of nondeterministic access latency between multi-

gigahertz microprocessors and multimegahertz FPGAs.

With the overhead of the memory cache, bus negotia-

tion, and synchronization, the perceived access laten-

cy can range from hundreds to thousands of processor

cycles. This severely reduces the performance of appli-

cations that require a tight feedback loop between the

microprocessor and the FPGAs, reaching the point

where the FPGA accelerator provides little speedup.

Hence, most applications running on these systems do

not have a strict real-time requirement, and the portion

of the algorithms accelerated on the FPGAs tends to be

compute intensive with relatively few data transfers

between the microprocessor and FPGAs.

BEE2 system
The BEE2 system uses Xilinx Virtex-2 Pro FPGAs10 as

the primary and only processing elements. This FPGA

design directly embeds the PowerPC 405 processor cores

into the reconfigurable fabric, minimizing the latency

between the microprocessor and the reconfigurable fab-

ric while maximizing the data throughput. Furthermore,

with FPGAs running at clock rates similar to that of the

processor cores, system memory, and communication

subsystems, BEE2 does not need hardware-managed

caches, hence all data transfers within the system have

tightly bounded latency. BEE2 is therefore well suited for

real-time applications, especially those that require high

117March–April 2005

integer or fixed-point computational throughput.

Another key differentiator of BEE2 is its programming

environment. Most commercial reconfigurable com-

puters separate the microprocessor and FPGA program-

ming. They use traditional, sequential high-level

languages (such as C or C++) for the microprocessor and

low-level hardware description languages (such as

Verilog or VHDL) for the FPGAs. The discrepancy in

design descriptions as well as computation models leads

to an awkward interface between the microprocessor

and reconfigurable fabric; thus, the interface is typical-

ly ad hoc and application specific. Instead, the BEE2 sys-

tem uses a high-level block diagram design environment

based on Mathworks Simulink and the Xilinx System

Generator library. BEE2 uses one unified computation

model—synchronous dataflow—for both the micro-

processor and the reconfigurable fabric, enabling more

flexible user-facilitated partitioning between the hard-

ware and software. We use automatic compilation tools

to generate the native exe-

cution binaries for each

side—machine code bina-

ries for microprocessors,

and bit files for FPGAs.

Hardware architecture
The major components

of the hardware architec-

ture are the compute mod-

ule and the global

communication networks.

We also briefly describe

the mechanical design of

a BEE2 module.

Compute module. Each

compute module in BEE2

consists of five Xilinx Virtex

2 Pro 70 FPGA chips direct-

ly connected to four dual-

data-rate 2, 240-pin DRAM

DIMMs, with a maximum

capacity of 4 Gbytes per

FPGA. Figure 2 shows a

block diagram of the com-

pute module. The design

organizes the four DIMMs

into four independent

DRAM channels, each run-

ning at 200 MHz (400 DDR)

with a 72-bit data interface (for a 64-bit data width with-

out error-correcting code). Therefore, the peak aggregate

memory bandwidth is 12.8 Gbps per FPGA.

Each module uses four FPGAs for computation and

one for control. The control FPGA has additional glob-

al interconnect interfaces and controls signals to the

secondary system components, including those for tem-

perature and voltage monitoring, Digital Video Interface

display, the universal serial bus, and so on. We classify

the connectivity on a single compute module into two

types of connections: on-board low-voltage CMOS (LVC-

MOS) parallel and off-board multigigabit transceiver

(MGT) serial.

The local mesh connects the four compute FPGAs on

a 2D grid. Each link between the adjacent FPGAs on the

grid provides over 40 Gbps of data throughput per link. The

four down links from the control FPGA to each of the com-

puting FPGAs provide up to 20 Gbps per link. These direct

FPGA-to-FPGA mesh links form a high-bandwidth, low-

Configurable Computing: Fabrics and Systems

118 IEEE Design & Test of Computers

4-Gbyte DDR2 DRAM
12.8 Gbyte/s (400 DDR)

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

M
G

T

Memory
controller

FPGA
fabric

IB4X/CX4
40 Gbps

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

M
G

T
Memory
controller

FPGA
fabric

IB4X/CX4
40 Gbps

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

MGT

Memory
controller

FPGA
fabric

IB4X/CX4
20 Gbps

100 Base-T
Ethernet

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

M
G

T

Memory
controller

FPGA
fabric

IB4X/CX4
40 Gbps

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

M
G

T

Memory
controller

FPGA
fabric

IB4X/CX4
40 Gbps

5 FPGAs
2VP70FF1704

138-bit, 300-MHz,
DDR 41.4 Gbyte/s

64 bits at
300-MHz DDR

Figure 2. Compute module block diagram.

latency mesh network for the FPGAs on the same compute

module; so it is possible to aggregate all five FPGAs to form

a virtual FPGA with five times the capacity.

All off-module connections use the MGTs on the FPGA.

Each individual MGT channel is software-configurable to

run at 2.5 or 3.125 Gbps with 8B or 10B encoding and

channel-bonded every 4 MGTs into a physical InfiniBand

4X (IB4X) electrical connector, to form a 10-Gbps full-

duplex (20-Gbps total) interface. The IB4X connections

are AC coupled on the receiving end to comply with the

InfiniBand (http://www.infinibandta.org) and the

10GBase-CX4 specification (http://www.ieee802.org/

3/10GBCX4/). There are a total of 18 IB4X connectors on

each BEE2 module—two from the control FPGA, four

from each of the four compute FPGAs—for a total 360-

Gbps off-module communication bandwidth. These MGT

interfaces can serve as direct intermodule communica-

tion, an InfiniBand or 10-Gbps Ethernet packet-switched

network, or direct I/O connection to external high-band-

width real-time devices, such as gigahertz ADCs or DACs.

Global communication networks. The BEE2 design

supports a variety of global connection schemes to

accommodate various applications. Figure 3 illustrates

the three basic types of global communication net-

works: a low-latency fourary global communication

tree, a high-bandwidth nonblocking crossbar, and a 10

or 100 Base-T Ethernet.

Each BEE2 compute module can serve as a global

communication tree node, connecting up to 16 other

compute modules and up to two independent parent

nodes. This type of tree communication network is useful

for data aggregation or distribution. Using the IB4X physi-

cal connections, the compute modules can also form

many other types of network topology, such as 3D mesh.

For applications that require high bisection band-

width for random communication among many com-

pute modules, we designed the BEE2 system to take

advantage of the commercial network switch tech-

nologies, such as InfiniBand or 10-Gigabit Ethernet. The

crossbar switch provides the highest throughput con-

nection in the BEE2 system with commercial switches

currently reaching 244, 4¥ ports in a single physical 9U

chassis, aggregating to 4.88-Tbps bisection bandwidth.

The regular 10 or 100 Base-T Ethernet connection,

available only on the control FPGA, provides an out-of-

band communication network for the user interface, low-

speed system control, monitoring, and data archiving.

We designed the compute module to run Linux on the

control FPGA with a full Internet Protocol network stack.

Mechanical design. Each BEE2 module resides in one

of the 10 blades in a custom 8U rack-mounted chassis.

With two of the 10 blades reserved for AC or DC power

supplies, each chassis packs eight BEE2 modules, hence

a standard 42-to-48U rack can host up to 40 BEE2 mod-

ules. With each BEE2 module designed to dissipate a

maximum 250 W (similar to a standard 1U dual-proces-

sor computer server), each rack has a power budget of

10 KW (12-KW AC input). Such a system with 40 BEE2

modules (200 FPGAs) can deliver up to 16 TOPS (32-bit

integer) or 2 Tflops, with up to 800 Gbytes of DRAM, and

over 7.2 Tbps of full-duplex I/O bandwidth.

Programming models
Because of the diverse application domains that

BEE2 targets, any single programming model would not

be optimal for all applications; hence the need for

domain-specific programming models that can fully

exploit BEE2’s computing power.

Currently, the most mature programming model for

BEE2 is the synchronous dataflow model for DSP and

communication applications. Commercial tools

(Mathworks Matlab/Simulink and Xilinx System

Generator) and BWRC-developed automation tools pro-

vide automatic mapping from high-level block diagrams

and state machine specifications to FPGA configura-

tions. This programming model and tool flow have

proven successful on a variety of projects at BWRC,11-13

particularly in digital signal processing and other data-

path-intensive streaming applications. To extend this

model to support BEE2-specific hardware, we are cur-

119March–April 2005

Compute
module

as
tree node

Compute
module

Compute
module NAS

100 Base-T Ethernet switch

4× 4×

4× 4×

N modules

10-Gigabit Ethernet switch

Figure 3. Global communication network.

rently developing stream-based design abstractions for

external DRAMs and global communication networks.

The BEE2 DSP programming model uses synchronous

dataflow diagrams specified in the Mathworks Simulink

environment to spatially describe the application algo-

rithm. Using Xilinx System Generator, we abstract the

physical FPGA fabric into a set of parameterizable library

blocks, including those for arithmetic operators, control

operators (such as demultiplex and merger), memory

interfaces (for SRAM or DRAM), and I/O interfaces (such

as chip to chip). Analogous to an instruction set archi-

tecture for microprocessors and DSPs, this functional-

level abstraction on FPGAs is largely invariant through

generations of FPGAs, at least those from the same ven-

dor. For example, the last four generations of Xilinx

FPGAs (from Virtex, Virtex-II, Virtex-II Pro, and Virtex-4)

exhibit the same functional-level abstraction.

In addition to the basic operators, the higher-level

libraries also provide complex operations—such as

those for FFT, finite impulse response (FIR), and Viterbi

decoding—much in the same way as the dedicated

accelerators implemented on DSPs. Nevertheless, these

special functions are highly architecture dependent,

and can vary from one FPGA generation to another.

The Simulink environment also provides a cycle-

accurate, bit-true emulation of the FPGA hardware. This

environment simulates applications with the correct

behavior for the FPGA hardware and can accurately

and quickly estimate hardware resource utilization. This

estimation approach is important because it eliminates

the need to run through the complete hardware syn-

thesis tool flow down to the physical FPGA hardware to

verify functionality or to obtain resource utilization sta-

tistics. Currently, besides generating the final hardware

implementation, the only reason for running the full

FPGA back-end flow is to accurately determine the

design’s clock rate.

Overall, the BEE2 DSP programming environment

provides a similar level of usability as assembly lan-

guage programming on DSPs. Despite the lack of effi-

cient high-level compiler technology, the synchronous

dataflow programming model for FPGAs extends natu-

rally into multiple-FPGA systems. It is possible to tightly

interconnect multiple FPGAs, as on a single BEE2 mod-

ule, to form a virtual FPGA, therefore enabling the par-

tition of the dataflow graph in the same fashion off chip

as on chip. When combined with high-bandwidth seri-

al links, the virtual FPGA concept can even extend, in a

fashion, to include physical FPGAs located across many

boards or modules.

BEE2 performance evaluation
In this article, we evaluate the computational effi-

ciency of the BEE2 system on three representative appli-

cations from the radio astronomy signal-processing

domain:

■ a billion-channel spectrometer,

■ a 1,024-channel polyphase filter bank (PFB), and

■ a two-input 1,024-channel correlator.

Spectrometer
The first application is a spectrometer, developed in

collaboration with the Search for Extraterrestrial

Intelligence (SETI, http://seti.berkeley.edu) project at

the University of California, Berkeley. SETI’s scientific

requirements demand the spectrometer to have a spec-

tral resolution of less than 1 Hz. The goal of this appli-

cation is to produce a subhertz spectral resolution of

over 800 MHz, hence delivering a billion-channel real-

time spectrometer in a single BEE2 module.

As Figure 4 shows, the data processing of the spec-

trometer starts with 16-Gbps digital inputs from the radio

telescope antenna ADC, which digitizes 4-bit in-phase and

quadrature (4-bit I, Q) samples of two polarization signals

and sends through two IB4X (or CX4) cables to the BEE2

module’s control FPGA. Using a 128-tap 4-channel PFB

implemented in the control FPGA, the 800-MHz complex,

dual polarization input signal stream is split into four 200-

MHz 8-bit complex, dual polarization streams; each

stream carries one-fourth of the 800-MHz spectrum. Each

of these streams then goes through the LVCMOS links on

the BEE2 module to each of the four compute FPGAs,

which implement a local spectrometer to split the 200-

MHz input signal into 256 million, 0.745-Hz channels. The

256-million-channel spectrometer consists of three major

steps: the 8K-channel PFB, followed by a corner turn, and

finally a 32K-point FFT. The 8K-channel 64K-tap PFB splits

the 200-MHz bandwidth input signal into coarse bands of

24.4 KHz each. Because the PFB outputs data in channel

order, a corner turn stage is required to reorder the data

in time sample order before it goes to the 32K-point FFT

stage. The compute FPGAs then accumulate the spectral

results at each frequency bin for 10 ms to increase the sig-

nal-to-noise ratio. Finally, they calculate the power spec-

trum and report bins with a power of 20 dB over the local

average to the control FPGA, which relays the results to

an external PC over the Ethernet interface.

Polyphase filter bank
The second application is a 1,024-channel PFB for

Configurable Computing: Fabrics and Systems

120 IEEE Design & Test of Computers

dual polarization inputs. This is a common step shared

by many applications for radio telescope arrays. A PFB

is essentially a decimated complex FIR filter followed

by an FFT operation, as Figure 5 shows. It’s mainly used

as a more efficient implementation than a bank of adja-

cent band-pass filters, and it divides the input spectrum

into a set of adjacent spectral channels. In this case, we

use an 8,192-tap FIR filter decimated by 1,024, along

with a 1,024-point FFT. The inputs to the PFB are two

complex data streams (8 bits each, real and imaginary),

one for each of the polarizations from the radio tele-

scope. The FIR coefficients are 12-bit real numbers, and

FFT coefficients are 24-bit complex numbers (12 bits

each, real and imaginary). All multiplications use 16-bit

multipliers and 32-bit additions.

In a typical telescope array environment, each anten-

na requires at least one PFB unit, so the PFB design’s

goal is to pack as many PFB units as possible into a sig-

nal physical FPGA while sustaining the input data rate.

At a target input clock rate of 250 MHz (a 1-Gbps data

rate per PFB), each XC2VP70 FPGA on a BEE2 module

can accommodate four PFB units, using the four IB4X

interfaces. So the ATA-350 system requires 88 BEE2

modules for all 350 antennas per each 250-MHz inter-

mediate frequency (IF) band.

Correlator
The third application is a 1,024-channel, two-input

cross-correlator, the building block for the full N 2 anten-

na correlator. Each of the two inputs is a continuous

stream of quantized spectral data from the outputs of the

PFB unit on each antenna. The correlator accumulates

the complex correlation results at 10 ms to 30 s, per the

requirements of the image. The input spectral data is in

an 8-bit complex number representation (4 bits each, real

and imaginary), hence we perform the multiplication

using 4-bit input multipliers and then accumulate it on 22-

bit registers. At a target clock rate of 200 MHz, we can pack

five cross-correlator units in a single XC2VP70 FPGA.

Correlating all the antennas in the ATA-350 system would

require over 3,000 BEE2 modules for each 200-MHz band.

Performance results
We mapped all three benchmark applications to

FPGAs using the programming model and tool flow we

described earlier. The FPGA performance numbers are

121March–April 2005

Corner turn
8K channels,

32K taps

PFB
8K channels,

64K taps

Power
spectrum

calculation

FFT
32K

points

Corner turn
8K channels,

32K taps

PFB
8K channels,

64K taps

Power
spectrum

calculation

FFT
32K

points

Corner turn
8K channels,

32K taps

PFB
8K channels,

64K taps

Power
spectrum

calculation

FFT
32K

points

Corner turn
8K channels,

32K taps

PFB
8K channels,

64K taps

Power
spectrum

calculation

FFT
32K

points

Report

Band-pass
filter

4 channels
128 taps

16 Gbps

8 Gbps

Figure 4. Billion-channel spectrometer.

x0(m)
p0(m) r0(m)

x1(m)
p1(m) r1(m)

xn(m)
p0(m) rn(m)

xN−1(m) XN−1(m)

X0(m)

X1(m)

Xn(m)

pN−1(m) rN−1(m)

m = 0

x (l)
N-point

FFT

Figure 5. Polyphase filter banks.

from the post place-and-route timing analysis of the

Xilinx ISE design tool suite; therefore, they are identical

to that for the final clock rate on the actual hardware.

We estimated the FPGA power consumption using the

Xilinx XPower tool.

Resource utilization. Figure 6 shows the physical

FPGA resource utilization for each benchmark. Typical

utilization measurements on DSPs or microprocessors

consider utilization as the temporal usage of the func-

tional units. In contrast, FPGA resource utilization is the

measure of both the spatial and temporal allocation of

the functional units. In this particular set of benchmark

applications, however, since all allocated functional

units are running at 100% duty cycle, the spatial utiliza-

tion of the FPGA is the overall utilization.

In the billion-channel spectrometer application,

each of the four 256-million-channel local spectrome-

ters uses the entire on-chip block RAM on a Virtex-II Pro

70 FPGA and about 50% of the other resources. This

imbalance arises from the large on-chip memory uti-

lization of the 32K-point FFT. On the other hand, the

resource utilization is much more balanced in the PFB

application. Although the leftover resources are enough

to implement one more PFB unit on the FPGA (a 20%

increase in PFB units), this would push the FPGA uti-

lization near its limit, seriously and negatively affecting

the clock rate. In this case, the mapping of the five PFB

units can only run at half the target 250-MHz clock rate,

not only reducing the overall throughput but also vio-

lating the input data rate requirement.

This clock rate degradation for high

FPGA utilization mainly comes from the

congestion of on-chip routing resources.

Both the spectrometer and the PFB

application use 16-bit multiplications and

32-bit additions, which have equivalent

operations on the DSP processors.

However, the correlator application per-

forms multiplications on 4-bit inputs.

Although DSPs can multiply 4-bit inputs,

they have hardware multipliers opti-

mized for 8-bit inputs, thus putting the

DSPs at a disadvantage. On the other

hand, FPGAs, with their bit-level config-

urability, can provide a much higher

level of spatial parallelism. This applica-

tion uses neither the dedicated on-chip

18-bit multiplier nor the block RAMs.

Similar to the PFB mapping case, you

could map six correlators (instead of five) on the FPGA,

but at the cost of an unacceptably low clock rate.

Computational efficiency. Next, we compare the FPGA

performance of the three benchmarks to that of the state-

of-the-art Texas Instruments DSPs and Intel Pentium 4

microprocessor. The FPGA we used in this study is the

same 130-nm CMOS technology XC2VP70-7FF1704C chip

in the BEE2. Two DSP chips from Texas Instruments are

the 130-nm CMOS C6415-7E chip running at 720 MHz and

the 90-nm CMOS C6415T-1G chip running at 1 GHz.14 The

microprocessor we used was the latest Intel 90-nm

Pentium 4 570 running at 3.8 GHz. The microprocessor

and the DSP performances assume the peak performance

for the corresponding arithmetic precision used in the

applications. We report the DSP power consumption from

the vendor power calculation spreadsheet15 based on full

utilization and maximum clock rate. The microprocessor

power consumption assumes full utilization as well.

Hence, in terms of performance, this comparison is intrin-

sically in favor of the DSPs and microprocessors. All chip

costs are the vendors’ price for 1,000-chip lots.

We measured performance in billions of MACs per

second (GMACs/s), as Figure 7 shows. For example, in

the spectrometer case, at the targeted 200-MHz clock

rate, each of the four compute FPGAs performs 28.8 bil-

lion multiplies/s and 39.2 billion additions/s. The con-

trol FPGA performs 32 billion multiplies/s and 32 billion

additions/s. Thus, on average, each FPGA performs

29.44 GMACs/s.

Configurable Computing: Fabrics and Systems

122 IEEE Design & Test of Computers

100

90

80

70

60

50

40

30

20

10

0
Spectrometer PFB Correlator

Flip-flops
Logic slices
18-bit multiplier
18-Kbyte block RAM

R
es

ou
rc

e
ut

ili
za

tio
n

(p
er

ce
nt

ag
e)

Figure 6. Resource utilization on the XC2VP70 FPGA.

In terms of computational throughput

per chip, the FPGAs in BEE2 can outper-

form the 720-MHz DSP by a factor of 10 to

34, 7 to 25 times faster than the 90-nm 1-

GHz DSP, and 4 to 13 times faster than

the latest Pentium 4. Figure 8 shows

power efficiency results; the XC2VP70

FPGA delivers 72 to 106% more through-

put on 16-bit operations compared to the

DSPs, and on 4-bit operations, it delivers

more than 11 times the DSP throughput.

Compared to the microprocessor, the

FPGAs provide over two orders of mag-

nitude more power efficiency.

We also compared the various chips

in terms of cost, as Figure 9 shows. The

FPGA’s compute throughput per unit

chip cost is 20 to 307% more than that of

the 1-GHz DSP, and 50 to 505% more than

that of the 3.8-GHz Pentium 4.

System integration. In addition to the

computational-efficiency advantage at

the individual chip level, FPGAs also pro-

vide more energy- and cost-efficient solu-

tions at the system level. The hardware’s

overall power consumption and cost

must include system components, such

as memory, printed circuit boards, and

network interfaces. In this area, FPGAs

offer a more integrated solution. In addi-

tion to the current practice of integrating

general-purpose processor cores on the

FPGA fabrics, the latest Virtex-4 FX FPGA

now provides built-in hardware support

for Ethernet and ADCs.

In applications where the algorithm is

naturally partitionable to take advantage

of cheaper and smaller-capacity FPGAs,

we can further reduce the overall system cost. For exam-

ple, in the 1,024 PFB application, a natural division of the

algorithm would split the four PFB units into four physical

FPGAs with smaller capacity but the same speed, such as

the XCV2P20-7. Therefore, the smaller FPGA can maintain

the same clock rate requirements, but it would cost much

less than a quarter of the larger FPGA’s price. A 1,000-unit

lot of XC2VP20-7s costs only $367 and delivers only 49.1

(GMACs/s)/dollar—58.4% more compute throughput per

dollar than the XC2VP70. At a power consumption of

3.83 W, the XC2VP20-7 is also 72.8% more power efficient.

Nevertheless, using smaller-capacity FPGAs will mar-

ginally increase the system cost, because of the addi-

tional external components and extra board resources

required. Detailed quantitative analysis on the overall

system cost would depend on the target application

and many other factors that are beyond the scope of

this article.

We now estimate the BEE2 module hardware cost at

$20,000 when manufactured in quantities of several lots

of 10, including full 20-Gbyte memories. Compared to the

typical cost of $4,000 for an Intel single-processor server,

123March–April 2005

1

10

100

1,000

Spectrometer PFB Correlator

G
M

A
C

s/
s

XC2VP70
C6415-7E
C6415T-1G
3.8-GHz Pentium 4

Figure 7. Absolute performance comparison.

0.01

0.10

1.00

10.00

100.00

G
M

A
C

s/
s/

W

XC2VP70
C6415-7E
C6415T-1G
3.8-GHz Pentium 4

Spectrometer PFB Correlator

Figure 8. Power efficiency comparison.

the BEE2 is five times more expensive, but it provides

over 50 times more compute throughput; hence, it still

retains 10 times more computing throughput per unit of

hardware system cost.

BEE2 IS OUR FIRST ATTEMPT at creating a universal

reconfigurable computing system that can target a wide

range of application domains, starting from high-per-

formance digital signal processing where FPGAs are a

proven technology, to scientific computing, where

FPGA use remains a relative novelty. The introduction

of modular FPGA computing platforms such as BEE2,

and improvements in domain-specific programming

models, can perhaps overturn the negative image of

FPGAs as a user-unfriendly technology.

As our work extends into other computational

domains, we will explore additional programming

methodologies. One of primary interest is the message-

passing interface (MPI) standard (http://www.

mpi-forum.org), which has been the predominant pro-

gramming model for existing microprocessor-based

supercomputers. We plan to implement the MPI library

for our HERC as a means to ease the task of porting

supercomputer applications. Many novel opportunities

exist for specializing MPI functions in the reconfigurable

fabric.

We could, for example, accelerate the computa-

tional kernels and inner loops of the programs using the

reconfigurable fabric. For this, we will rely on the use of

predefined library elements and on recent work in auto-

matic C-to-hardware compilation. The

PowerPC core on each FPGA provides a

conventional RISC processor to run the

program’s nonaccelerated parts.

In a sense, MPI forms an abstract

machine. It is the target for the applica-

tion algorithm developer and, for us, the

organizing structure for the communica-

tion circuits built in the reconfigurable

fabric. We would like to explore other

abstract machine architectures tailored

for specific problem domains. For

instance, these might include abstract

architectures for regular grid problems

and cellular automata; and irregular

graph problems, such as transistor-level

circuit simulation. These abstract

machine models will be the target for

domain-specific programming lan-

guages, and the organizing principle for automatic prob-

lem mapping and optimization. ■

References
1. C. Chang et al., “Implementation of BEE: A Real-Time

Large-Scale Hardware Emulation Engine,” Proc. 2003

ACM/SIGDA 11th Int’l Symp. Field-Programmable Gate

Arrays (FPGA 03), ACM Press, 2003, pp. 91-99.

2. J.P. Durbano et al., “FPGA-Based Acceleration of the 3D

Finite-Difference Time-Domain Method,” Proc. 12th Ann.

IEEE Symp. Field-Programmable Custom Computing

Machines (FCCM 04), IEEE CS Press, 2004, pp. 156-

163.

3. W. Chen et al., “An FPGA Implementation of the Two-

Dimensional Finite-Difference Time-Domain (FDTD)

Algorithm,” Proc. 2004 ACM/SIGDA 12th Int’l Symp.

Field-Programmable Gate Arrays (FPGA 04), ACM

Press, 2004, pp. 213-222.

4. A. DeHon, R. Huang, and J. Wawrzynek, “Hardware-

Assisted Fast Routing,” Proc. 10th Ann. IEEE Symp.

Field-Programmable Custom Computing Machines

(FCCM 02), IEEE CS Press, 2002, p. 205.

5. M. Wrighton and A. DeHon, “Hardware-Assisted Simu-

lated Annealing with Application for Fast FPGA

Placement,” Proc. 2003 ACM/SIGDA 11th Int’l Symp.

Field-Programmable Gate Arrays (FPGA 03), ACM

Press, 2003, pp. 33-42.

6. T.J. Callahan et al., “Fast Module Mapping and

Placement for Datapaths in FPGAs,” Proc. 1998

ACM/SIGDA 6th Int’l Symp. Field Programmable Gate

Arrays (FPGA 98), ACM Press, 1998, pp. 123-132.

Configurable Computing: Fabrics and Systems

124 IEEE Design & Test of Computers

Figure 9. Cost efficiency comparison.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

Spectrometer PFB Correlator

M
M

A
C

s/
s/

do
lla

r

XC2VP70
C6415-7E
C6415T-1G
Pentium 4-3.8 GHz

7. Xilinx Virtex-4 Data Sheet, DS112, version 1.2, Xilinx

Corp., 18 Dec. 2004.

8. D. Caliga and D.P. Barker, “Delivering Acceleration: The

Potential for Increased HPC Application Performance

Using Reconfigurable Logic,” Proc. SC2001, IEEE CS

Press, 2001, p. 28.

9. C.N. Keltcher et al., “The AMD Opteron Processor for

Multiprocessor Servers,” IEEE Micro, vol. 23, no. 2, Mar.

2003, pp. 66-76.

10. Xilinx Virtex-II Pro Data Sheet, DS083, version 4.1, 11

Nov. 2004.

11. K. Kuusilinna et al., “Real-time System-on-Chip Emula-

tion,” Winning the SoC Revolution: Experiences in Real

Design, G. Martin and H. Chang, eds., Springer, 2003,

pp. 229-253.

12. C. Chang et al., “Rapid Design and Analysis of Commu-

nication Systems Using the BEE Hardware Emulation

Environment,” Proc. 14th IEEE Int’l Workshop Rapid

Systems Prototyping, IEEE Press, 2003, pp. 148-154.

13. K. Kuusilinna et al., “Designing BEE: a Hardware Emula-

tion Engine for Signal Processing in Low-Power Wireless

Applications,” EURASIP J. Applied Signal Processing,

vol. 2003, no. 6, May 2003, pp. 502-513.

14. Texas Instruments TMS320C6414T/15T/16T Fixed-

Point Digital Signal Processors Datasheet (Rev. D), 31

Oct. 2004; http://www-s.ti.com/sc/ds/tms320c6414t.pdf.

15. Texas Instruments TMS320C6414T/15T/16T Power

Consumption Summary, 2 Aug 2004; http://www-

s.ti.com/sc/psheets/spraa45/spraa45.pdf.

Acknowledgments
The BEE2 project’s radio astronomy application

development is in collaboration with the SETI@Home

and Serendip (Search for Extraterrestrial Radio

Emissions from Nearby Developed Intelligent

Populations) projects at the UC Berkeley Space

Science Laboratory (Dan Werthimer), as well as the

UC Berkeley Radio Astronomy Laboratory (Melvyn

Wright). We also thank Xilinx for its generous donation

of FPGAs, software tools, and engineering assistance.

Many thanks to all the hard work by the students and

staff members of the BEE2 team: Pierre-Yves Droz, Greg

Gibeling, Nan Zhou, Yury Markovskiy, Zohair Hyder,

Adam Megacz, Alexander Krasnov, Hayden So, Kevin

Camera, Brian Richards, and Susan Mellers. The BEE2

project is funded by the Microelectronics Advanced

Research Corp. (Marco), C2S2, and the Multi-

disciplinary Research Program of the University

Research Initiative (Muri) programs, as well as BWRC

industrial-sponsor companies.

Chen Chang is a PhD student of
electrical engineering and computer
sciences at the University of Califor-
nia, Berkeley. His research interests
include large-scale FPGA-based real-

time computer systems, digital system design automa-
tion and hardware emulation, and wide-band antenna
array signal processing systems. Chang has an MS in
electrical engineering and computer sciences from the
University of California, Berkeley. He is a member of
the IEEE and the IEEE Computer Society.

John Wawrzynek is a professor of
electrical engineering and computer
sciences at the University of California,
Berkeley, where he is the head of the
Berkeley Reconfigurable Architec-

tures, Software, and Systems (Brass) group. His
research interests include the design and application
of reconfigurable computing systems, parallel com-
puting architectures, and VLSI design. Wawrzynek has
an MS in electrical engineering from the University of
Illinois, Urbana-Champaign, and an MS and a PhD in
computer science from the California Institute of Tech-
nology. He is a member of the IEEE and the IEEE Com-
puter Society.

Robert W. Brodersen is the John
R. Whinnery Distinguished Professor in
the Department of Electrical Engineer-
ing and Computer Science at the Uni-
versity of California, Berkeley. He is

also the co-scientific director of the Berkeley Wireless
Research Center (BWRC) where his research focuses
on new applications of IC as applied to personal com-
munications systems with an emphasis on wireless
communications, low-power design, and the CAD tools
necessary to support these activities, including system-
level real-time prototyping, ultra-wideband (UWB) radio
systems, multiple-carrier multiple-antenna algorithms,
and microwave CMOS radio design. Brodersen has a
BS in electrical engineering and mathematics from the
California State Polytechnic University, Pomona, and an
MS and a PhD in engineering from the Massachusetts
Institute of Technology. He is a member of the National
Academy of Engineering and a Fellow of the IEEE.

Direct questions and comments about this article
to Chen Chang, 2108 Allston Way, Suite 200, Berkeley,
CA 94704; chenzh@eecs.berkeley.edu.

125March–April 2005

