

BEE2: a multi-purpose computing platform for radio telescope digital signal processing applications

Bob Brodersen, Chen Chang, John Wawrzynek
Dan Werthimer, Melvyn Wright
EECS, UC Berkeley
Space Science Laboratory
Radio Astronomy Laboratory, UCB

Telescope cost for fixed collect area

Problems with existing approach

- All specialized instrument design
 - Separate PCB for each subsystem, dedicated functionality
 - Custom interconnect, backplane, and memory interface
 - Fully global synchronous I/O and processing
 - Clock distribution, power consumption, and voltage regulation
- Each instrument design cycle is 5 years!!!
- Instrument upgrade takes the similar effort as designing a new product

- Microprocessor/DSP clusters?
 - Multi-processor programming is extremely hard, especially for real-time applications
 - Limited I/O capability, high power consumption, low computational density
- ASIC?
 - Lack of flexibility
 - Long design cycles
- FPGA? Sure!

Moore's Law in FPGA world

3X improvement per year!

100X More efficient than micro-processors!

BEE2 system design philosophy

- Compute-by-the-yard
 - Modular computing resource
 - Flexible interconnect architecture
 - On-demand reconfiguration of computing resources
- Economy-of-scale
 - Ride the semiconductor industry Moore's Law curve
 - All COTS components, no specialized hardware
 - Survival of application software using technology independent design flow

Basic Computing Element

- Single Xilinx Virtex 2 Pro 70 FPGA
 - ~70K logic cells
 - 2 PowerPC405 cores
 - 326 dedicated multipliers (18-bit)
 - 5.8 Mbit on-chip SRAM
 - 80 Gbps MGT I/O bandwidth
 - Over 80 billion CMac/s performance
- 4 physical DDR2-400 banks
 - Each banks has 72 data bits with ECC
 - Independently addressed with 32 banks total
 - Up to 12.8 GBps memory bandwidth, with maximum 8 GB capacity

B2 Module: board layout

- 5 compute elements on a board
- Up to 400 billion
 CMAC/s performance
- communication bandwidth:
 - 240 Gbps on-board360 Gbps off-board
- Module:
 - 14X17 inch 22 layerPCB
 - Hardware cost per module: \$20K

Global Interconnects

- Commercial Infiniband switch from Mellanox, Voltaire, etc.
 - Packet switched, non-blocking
 - 24 ~ 144 ports (4X) per chassis
 - Up to 10,000 ports in a system
 - 200~1000 ns switch latency
 - 400~1200 ns FPGA to FPGA latency
 - 480Gbps ~ 2.88Tbps full duplex constant cross section
 bandwidth
 - <\$400 per port</p>
- Ethernet
 - Administrative usage only
 - System monitoring
 - Debugging

19" 48RU Rack Cabin Capacity

- 40 compute nodes in 5 chassis (8U)
 per rack
- Up to 16 trillion CMac/s performance per rack
- 250 Watt AC/DC power supply to each blade
- 12.5 Kwatt total power consumption
- Hardware cost: ~ \$1M

BEE2 system cost breakdown

For 100 Trillion CMAC/s performance
Using 342 BEE2 modules, 14 Infiniband switches
Total system cost with NRE: \$10 Million USD

NRE cost includes algorithm ,PCB design, hardware mapping, system integration and testing.

BEE module cost breakdown

Not including FPGA cost

Programming Model: Discrete Time Block Diagram with FSM

- Xilinx system generator library with BEE2 hardware specific hardware abstractions
- User assisted portioning with automatic system level routing

BEE2 hardware abstractions

- Data flow operators
 - Data type: fix-point
 - Math operators: +/-, *, /, &, |, xor, ~, >, =, <, srl, sll, sra</p>
 - Control operators: demux/switch, mux/merge
- Memory
 - On-chip SRAM/Registers: shift register, RAM, ROM
 - Off-chip DRAM: stream RAM
- Communication and I/O
 - Static links: stream I/O
 - Dynamic links: Remote DMA
- Synchronization
 - Time stamp

Direct conversion radio frontend

Unified Digital Processing Architecture

- Distributed per antenna spectral channel processing
- Multiple reconfigurable backend application processing
- Commercial packet switched interconnect
- Backend data pulling through remote DMA access
- Locally synchronous, global asynchronous

1 GHz 2 billion channel spectrometer

- 1 GHz input bandwidth (dual polarization, 4 bit I & Q)
- 2 billion channel spectrometer (0.465 Hz resolution)
- In a single BEE2 module

FX Correlator (ATA350, single IF) in 144 BEE2 modules

44 BEE2 modules for PFB & CRB 100 BEE2 modules for XMAC Single 144 port Infiniband switch Input Bitwidth = 4,4
Polarization = 2

Dump time = $10ms \sim 30s$

Output Bitwidth = 32

Current status and projected timeline

- BEE2 PCB schematic design (5/2004, finished)
- BEE2 PCB layout design (8/2004, on going)
- First prototype system of 2 compute nodes tested and operational (12/2004)
- 12 node system manufacturing (2005, H1)
- Demonstration of 32 antenna correlator, 16 pt
 beamforming, and 1 GHz 2B ch spectrometer (2005, H2)

Future: BEE3 in 2007

- Xilinx just announced
 Virtex-4 family
 - 4~6X performance improvement
- DDR2 Memory specification up to 800MHz, 4GB per DIMM
- 100 Gbps Infiniband specification under development
- Direct scaling of BEE2 architecture

Scaling of the BEE2 architecture

Radio Telescope	ATA 350	SKA 2000		SKA 4400
Total IF bandwidth in GHz	0.4	2		4
Antennas	350	2000		4400
Beam	16	128		512
Correlator comp. req. (CMac/s)	4.9E+13	8E+15	-	7.744E+16
Beamformer comp. req. (CMAC/s)	8.96E+12	2.048E+15	3.	.60448E+16
BEE2 cost in \$M (1X, 2005)	\$ 6.10	\$ 1,057.84	\$	11,947.57
BEE3 cost in \$M (5X, 2007)	\$ 1.22	\$ 211.57	\$	2,389.51
BEE4 cost in \$M (25X, ~2009)	\$ 0.24	\$ 42.31	\$	477.90
BEE5 cost in \$M (125X, ~2011)	\$ 0.05	\$ 8.46	\$	95.58

The BEE2 Team

- Faculty in charge
 - Bob W. Brodersen
 - John Wawrzynek
- Graduate students
 - Kevin Camera
 - Chen Chang
 - Pierre-Yves Droz
 - Zohair Hyder
 - Alexander Krasnov
 - Yury Markovskiy
 - Adam Megacz
 - Hayden So
 - Nan Zhou

- Industrial Liaison
 - Ivo Bolsens (Xilinx)
 - Bob Conn (Xilinx)
- Research associates
 - Don Becker (UCB, astro)
 - Dan Werthimer (SSL)
 - Melvyn Wright (UCB, RAL)
- Technical staff
 - Susan H. Mellers
 - Brian Richards
- Undergraduate student
 - John Conner
 - Greg Gibeling